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Abstract

The dielectric image line is treated as an example of a line that can support a surface-
wave mode, and reflections from metallic obstacles on the line are considered. This problem
finds its application in an obstacle detection scheme for guided ground transportation where
the metallic obstacle may represent a preceding vehicle. An integral equation for the cur–
rents on the obstacle is solved by the moment method and the surface-wave reflection coeffi-
cient is obtained.

Introduction

Use of surface-wave structures to provide
a communication system for railways has been
discussed in the literature. Detection of
obstacles such as landslides, a preceding
vehicle, . . ., etc., is also possible by
launching signals along the surface-wave line
from an installed trans/receiver set on the
vehicle and signal-processing the returning
echo to give a !!Guided Radar SyStemll. Fig. 1
shows this concept of obstacle detection. In
this figure, the contour of false alarm dis–
crimination coincides with a constant power
density contour of the attenuated surface-
wave mode and it is assumed that any obstacle
outside this contour will reflect a negligi–
ble amount of power and so will not be de-
tected . Regions of probable false alarms and
probable misses are shown and it is seen that
these are smaller when the total attenuation
between repeaters is low. Hence there is a
necessary relationship between the attenua-
tion rate on the line, the repeater span and
the required probability of false alarm or
miss ,

A basic problem in the above application
is the evaluation of reflection coefficients
from typical obstacles on the surface-wave
structure. Apart from the work of Gillespie
and Gustincic2 on reflections from symmetric
metallic obstacles on the Goubau line, it
appears that this problem has received little
consideration. Moreover, the use of the
Goubau line for guided ground transportation
has the disadvantage of not being a self-
supporting structure. Hence, radiation, due
to the supports and line–sag between supports,
adds to its losses. Lines that are self-
supporting include the dielectric-image line,
the slotted coaxial line, the loose braided
coaxial line, . . ., etc. Among these, the
image line is the one that is most accessible
to rigorous analysis and hence can be favora-
bly used for analytic evaluation of surface-
wave reflection coefficients.

In this paper we consider the reflection
from a thin metallic obstacle on the image
line . The geometry of the problem is shown
in fig. 2. The obstacle extends over the
whole range of the circumferential dimension
(o<$l<Tr). The dominant mode on the image
lin~ is–the HE1l mode. For the particular
shape of the obstacle in fig. 2, the scatter-
ed fields will have the same dependence on
@ as the incident fields. The currents on
the obstacle will have both radial and cir-
cumferential components. Greenfs functions

for the image line are obtained by use of the
transverse spectral representation for the
fields3 and are used in an integral equation
for the obstacle current distribution from
which the surface-wave reflection coefficient
is obtained.

Theoretical Outline of the Solution

(i) Green’s functions for the image line.
The element of current that is suitable

as a unit source for the present problem is
of infinitesimally small radial and axial ex-
tent and varies harmonically with Q; this is
given by

Jp(ps)/~~~~ce = * 6(o-Ps)d(z)sin 0
s

unit 1——
‘+(ps)’source - ITpS

6(p-ps)&(z)cos $

where ps is the radial location of the source.
The Green’s dyad is defined by

EP(P)

[ 1[ ]

GPP(P,PS) GPO(P,PS) JP(PS)

=f dVs
E@(P) J@(PS)_G@p(p>ps) G@$(p~ps) -

where E, G and dVs denote electric field,
Green’s function and differential volume re-
spectively. A transverse spectral represen-
tation is used to represent a general dis-
turbance on the line; for instance, the
radial field EP(P) at a certain cross-section
is given by

EP(P) = Asw(ep(p)) sw+f~B(k)ep(p,k)dk (1)

where Asw is the coefficient of the surface-
wave component and B(k) is the coefficient of
the continuous spectrum over the transverse
wavenumber, k. (ep(p))sw and ep(p;k) are the
normalised field functions of the surface
wave and the continuous spectrum respectively.

The transverse spectral representation
has been preferred to the longitudinal one
because the excitation coefficients for a
known source are then more straightforwardly
obtained. An orthogonality relationship is
derived between the surface-wave mode and the
pseudo-modes (components of the continuous
spectrum), as well as among the latter modes.
By use of this relationship, the excitation
coefficients , A5W and B(k) due to a unit cur-
rent source are obtained, thus yielding the
Greents functions for this source.

The path of integration in eqn. (1) is d+
formed in the complex k plane and then
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performed semi-numerically.

(ii) The current distribution and the surface-
wave reflection coefficient.

An integral equation for the current dis-
tribution is obtained by use of the Green’s
dyad, ~ and imposing the boundary condition
of zero tangential electric field on the ob–
stacle; this is given by

r ~(p,ps).~(ps)dvs+~i(p)=~ on the
obstacle obstacle.

where ~i(~) is the incident radial and cir-
cumferential components of the incident sur-
face-wave mode; more specifically, Ei(p) is
the column

[1

Eip(P)

EiO(, )

with a simi~ar meaning for ~(ps).

The above integral equation can be
solved by the moment method by using pulse
function approximation for the currents and
point-matching for the fields. Alternatively
the current can be expanded into a finite
Fourier series of sine and cosine functions
defined on the obstacle. The coefficients of
this series are obtained by point-matching
the fields. This method is proved to be more
reliable than the use of pulse functions
since it filters out the higher spatial har-
monics of the current, which are liable to be
in error because of the unavoidable numerical
inaccuracies of the Greenfs functions. The
number of terms in the Fourier series of the
current are increased until the resulting
surface wave reflection coefficient shows no
significant change. It is worth mentioning
that an attempt to include more spatial har-
monics for the current than a certain criti-
cal number results in an inaccurate reflec-
tion coefficient that oscillates about the
correct value.

A variational procedure using the Raleig&
Ritz method is also attempted. The current
is again approximated by a finite Fourier
series and the surface-wave reflection coef-
ficient, (R) is computed from a formula that
is stationary with respect to the series co-
efficients .

Some Preliminary Results

Table 1 shows a comparison of the predic-
ted magnitudes of reflection coefficient
(obtained by the moment method and the use of
a finite Fourier series for the current) with
those measured. The frequeney is 2.05 GHz

and the dielectric semi-rod has a radius of
2.5 cm and a relative permittivity of 2.56.
It may be noted that the corresponding re-
flection coefficients obtained by the varia–
tional procedure differ from those in table
1 by only 2.5 to 9%, which gives increased
confidence in these results. The discrepan-
cies between theoretical and experimental re-
sults are believed to be partially due to an
inaccurate recording of the frequency during
the experiment along with the fact that the
transverse decay coefficient is highly sen-
sitive to the frequency. The last two

columns in the table show an attempt to fit
the obtained results by use of a simple em-
pirical formula. Such a formula should be
very useful when dealing with more complex
shapes of the obstacle or the line itself.

Conclusion and Further Work

In this paper, we have briefly described
the concept of “Guided Radar”. The dielectric
image line is taken as an example of a sur-
face-wave structure that is accessible to
rigorous analysis. Surface wave reflection
coefficients from metallic semi-annular ob-
stacles on the line are considered and a meth–
od is presented for their prediction in mag-
nitude and phase, as well as the prediction of
the current distribution on the obstacle.

Extension of the analysis to other shapes
of obstacle is found to increase the computa-
tional complexity very much, since modes with
higher harmonics in the circumferential di-
rection are then introduced. However, some
approximation might be in order. It is help-
ful here to consider that the field of an
element of current on the obstacle has three
components: (i) the direct radiation, as if’ in
free space, (ii) the indirect radiation due
to reflections from the guiding structure and
(iii) the surface wave mode. It is due to
the indirect radiation that the Greents func-
tions are more complicated than those in-
volved in the usual free-space radar. In the
present problem, it is found that great sim-
plification is attained if the dielectric
semi-rod is removed, or replaced by free
space while computing the indirect radiation
component . This removal should be justified
if the obstacle is not too near to the line.
With this simplification, the use of cylindri-
cal coordinates becomes unnecessary or of no
particular advantage; hence extension is pos–
sible to obstacles of arbitrary shape. In-
vestigation of this extension is underway.
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“.2

3.5 2.0 0.28 0.181 0.168 0“.;:0

4.0 2.0 0.15 0.146 0.150 0.150

4.5 2.0 0.13 0.120 0.132 0.128

3.5 3.0 0.30 0.190 0.186 0.214

4.0 3.0 0.16 0.162 0.172

4.5 3.0 0.13 0.144 0.136
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TABLE 1: SOME PRELIMINARY RESULTS
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